
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 12. October 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 4 HS 20

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

�e solutions for this sheet are submi�ed at the beginning of the exercise class on October 19th.

Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

�e following theorem is very useful for running time analysis of divide-and-conquer algorithms.

�eorem 1 (Master theorem). Let a,C > 0 and b ≥ 0 be constants and T : N → R+ a function such
that for all even n ∈ N,

T (n) ≤ aT (n/2) + Cnb. (1)

�en for all n = 2k, k ∈ N,

• If b > log2 a, T (n) ≤ O(nb).

• If b = log2 a, T (n) ≤ O(nlog2 a · log n).

• If b < log2 a, T (n) ≤ O(nlog2 a).

If the function T is increasing, then the condition n = 2k can be dropped. If (1) holds with “=”, then we
may replace O with Θ in the conclusion.

�is theorem generalizes some results that you have seen in this course. For example, the running
time of Karatsuba algorithm satis�es T (n) ≤ 3T (n/2) + 100n, so a = 3 and b = 1 < log2 3, hence
T (n) ∈ O(nlog2 3). Another example is binary search: its running time satis�es T (n) ≤ T (n/2)+100,
so a = 1 and b = 0 = log2 1, hence T (n) ∈ O(log n).

In parts a), b) and c) of the �rst exercise you will see some examples of recurrences that can be analyzed
in O-Notation using Master theorem. �ese three examples show that the bounds in Master theorem
are tight.

Exercise 4.1 Solving Recurrences (1 point).

For this exercise, assume that n is a power of two (that is, n = 2k, where k ∈ {0, 1, 2, 3, 4, . . .}).

a) Consider the following algorithm:

Algorithm 1 g(n)

if n > 1 then
for i = 1, . . . , 5 do

for j = 1, . . . , n do
for k = 1, . . . , n do

f()

g(n/2)
g(n/2)

else
f()

�e number of calls of f is given by the recurrence relation T (1) = 1 and T (n) = 2T (n2) + 5n2 for
n ≥ 2. Using mathematical induction show that T (n) = 10 · n2 − 9n.

Base case. Let k = 0, n = 1. T (1) = 1 = 10 · 12 − 9 · 1.

Induction Hypothesis. We assume that there is some k ≥ 0 and n = 2k such that

T (n) = 10n2 − 9n.

Inductive step (k → k + 1). We know that T (2n) = 2T (n) + 5 · (2n)2 = 2T (n) + 20n2. Using
induction hypothesis for T (n):

T (2n) = 2
(
10n2 − 9n

)
+ 20n2 = 40n2 − 18n = 10 · (2n)2 − 9 · (2n).

as desired.

b) Consider the following algorithm:

Algorithm 2 g(n)

if n > 1 then
for i = 1, . . . , 3n do

f()

g(n/2)
g(n/2)

else
f()
f()

�e number of calls of f is given by the recurrence relation T (1) = 2 and T (n) = 2T (n2) + 3n, for
n ≥ 2. Using mathematical induction show that T (n) = 2n + 3n log2 n.

Base case. Let k = 0. �en

T (20) = T (1) = 2 = 2 · 20 + 3 · 20 · log2 20.

Induction Hypothesis. We assume that for some k ≥ 0 it holds that

T (2k) = 2 · 2k + 3 · 2k · log2 2k = 2 · 2k + 3 · 2k · k.

2

Inductive step (k → k + 1). We know that

T (2k+1) = 2T (2k) + 3 · 2k+1.

Using induction hypothesis for T (2k):

T (2k+1) = 2
(

2 · 2k + 3 · 2k · k
)

+ 3 · 2k+1

= 2 · 2k+1 + 3 · 2k+1 · k + 3 · 2k+1

= 2 · 2k+1 + 3 · 2k+1(k + 1),

as desired.

c) Consider the following algorithm:

Algorithm 3 g(n)

if n > 1 then
for i = 1, . . . , 8 do

g(n/2)

for i = 1, . . . , 4 do
for j = 1, . . . , n do

for k = 1, . . . , n do
f()

else
f()
f()
f()

�e number of calls of f is given by the recurrence relation T (1) = 3 and T (n) = 8T (n2) + 4n2,
for n ≥ 2. Using mathematical induction show that T (n) = 7n3 − 4n2.

Base case. Let k = 0, n = 1. �en T (1) = 3 = 7 · 13 − 4 · 12.

Induction Hypothesis. We assume that for some k ≥ 0 and n = 2k it holds that

T (n) = 7n3 − 4n2.

Inductive step (k → k + 1). We know that T (2n) = 8T (n) + 4 · (2n)2 = 8T (n) + 16n2. Using
induction hypothesis for T (n):

T (2n) = 8
(
7n3 − 4n2

)
+ 16n2 = 56n3 − 16n2 = 7 · (2n)3 − 4 · (2n)2.

as desired.

�e following de�nition is closely related to O-Notation and is also useful in running time analysis of
algorithms.

De�nition 1 (Ω-Notation). Let f, g : N → R+. We say that g ≥ Ω(f) if there exists C > 0 (that may
depend on g) such that for all n ∈ N , g(n) ≥ Cf(n).

3

As forO-Notation, typicallyN = N, but sometimes we will consider other sets, e.g. N = {2, 3, 4, . . .}.

Exercise 4.2 Asymptotic notations.

a) Show that g ≥ Ω(f) if and only if f ≤ O(g).
Solution:

Proof. To show the equivalence we show both directions:

�e if-part⇒: If g ≥ Ω(f) there exists a C > 0 such that for all n ∈ N we have Cf(n) ≤ g(n).
�us, dividing by C on both sides yields f(n) ≤ 1

C g(n), which means that f ≤ O(g).

�e only-if-part⇐: If f ≤ O(g) there exists aC > 0 such that for alln ∈ N wehave f(n) ≤ Cg(n).
�us, dividing by C on both sides yields 1

C f(n) ≤ g(n), which means that g ≥ Ω(f).

b) As a reminder, we write g = Θ(f) if g ≤ O(f) and g ≥ Ω(f) at the same time. Describe the
(worst-case) running time of the following algorithms in Θ-Notation.

1) Karatsuba algorithm. Solution: Θ(nlog2(3))

2) Binary Search. Solution: Θ(log2(n))

3) Bubble Sort. Solution: Θ(n2)

c) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn ≤ O(

√
n) � �

log(n!) ≥ Ω(n2) � �

nk ≥ Ω(kn), if 1 < k ≤ O(1) � �

log3 n
4 = Θ(log7 n

8) � �

claim true false

n
logn ≤ O(

√
n) � �

log n! ≥ Ω(n2) � �

nk ≥ Ω(kn) � �

log3 n
4 = Θ(log7 n

8) � �

d) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

4

claim true false

n
logn ≥ Ω(n1/2) � �

log7(n
8) = Θ(log3(n

√
n)) � �

3n4 + n2 + n ≥ Ω(n2) � �

(∗) n! ≤ O(nn/2) � �

claim true false

n
logn ≥ Ω(n1/2) � �

log7(n
8) = Θ(log3(n

√
n)) � �

3n4 + n2 + n ≥ Ω(n2) � �

(∗) n! ≤ O(nn/2) � �

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.
Solution: All claims except for the last one are easy to verify using either the theorem about the
limit of f(n)

g(n) or simply the de�nitions ofO,Ω and Θ. �us, we only present the solution for the last
one.

Consider n! for an even n, by de�nition we have n! = n(n − 1) · · · 1. By grouping terms we can
write n! as a product of n

2 factors:

n! =

n/2−1∏
k=0

(n− k)(k + 1).

To show that the claim is false we �rst show that each factor of this product is larger than n, for
n > 0 and k > 0:

nk + n− k2 − k > n⇔ nk > k2 + k

⇔ n > n/2 + 1 > k + 1.

Now, we can consider the quotient

nn/2

n!
=

n/2−1∏
k=0

n

(n− k)(k + 1)

=

n/2−1∏
k=1

n

(n− k)(k + 1)
.

We observe that, for k, l ∈ {0, . . . , n/2− 1} with k < l, we have (n− k)(k + 1) < (n− l)(l + 1)
and that for n > 4, we have n

(n−1)(1+1) <
2
3 . �us, for n > 4:

nn/2

n!
≤

n/2−1∏
k=1

n

2n− 2

≤
(

2

3

)n/2−1
.

For n → ∞ this value tends to zero. An analogous argument works for odd n. �us, by �eorem
1.1. from the lecture we have that n! 6≤ O(nn/2).

5

Exercise 4.3 Proving an invariant (1 point).

Let n ∈ N be an odd integer. Consider the following algorithm that starts with the list of all integers
from 1 to 2n and returns a single integer:

Algorithm 4 A(n)

L← [1, 2, . . . , 2n]
while length(L) > 1 do

Choose any two di�erent elements a and b in L.
Remove a and b from L, and add |a− b| to L.

return L[1]

Here length(L) denotes the number of elements contained in the list L, and L[1] denotes its �rst
element.

�e goal of this exercise is to prove that, no ma�er how the two elements a and b are chosen, the
algorithm will never return a zero.

a) Explain brie�y why A(n) always terminates. How many times does it enter the while loop ?

Solution: In each iteration of the while loop, length(L) decreases by exactly 1. �erefore the list
will eventually contain a single element, at which point the algorithm terminates by returning this
element. �e while loop is entered 2n− 1 times.

b) Let S(L) :=
∑

k∈L k be the sum of all elements of L. Prove that the parity of S(L) is an invariant
of the algorithm, i.e. that a�er each iteration of the while loop, the value of S mod 2 is the same.

Solution:

Consider the list L at any point of the algorithm, and let L′ denote the resulting list a�er going
through the while loop once from L. We have to show that S(L) ≡ S(L′) mod 2, which is equiv-
alent to S(L) − S(L′) ≡ 0 mod 2. Since L′ is obtained from L by removing a and b and adding
|a− b|, we have S(L)− S(L′) = a + b− |a− b|. We distinguish two cases:

Case 1, a ≥ b. In this case |a−b| = a−b, and thereforeS(L)−S(L′) = a+b−(a−b) = 2b ≡ 0mod 2.

Case 2, a < b. In this case |a−b| = b−a, and thereforeS(L)−S(L′) = a+b−(b−a) = 2a ≡ 0mod 2.

�ereforewe always haveS(L)−S(L′) ≡ 0mod 2which proves that the parity ofS(L) is invariant.

c) Deduce that A(n) never returns the number 0.

Solution:

Let L∗ denote the �nal list (of length 1) obtained in the algorithm, i.e. A(n) returns the integer
L∗[1]. By part b, we know that S(L∗) = L∗[1] has the same parity as S([1, 2, . . . , 2n]), the sum of
the elements of the initial list, which contains all integers from 1 to 2n. We compute

S([1, 2, . . . , 2n]) =
2n∑
k=1

k =
2n(2n + 1)

2
= n(2n + 1),

which is an odd number since n is odd by assumption and 2n+ 1 is always odd if n ∈ N. �erefore,
L∗[1] ≡ S([1, 2, . . . , 2n]) ≡ 1 mod 2. In particular, it is impossible that L∗[1] equals 0.

6

Figure 1: Balance scale.

Exercise 4.4 Finding fake coins with a balance scale (1 point).

Imagine that you are given n ’1 franc’ coins of which k coins are fake. �e fake coins are slightly heavier
than the real ones, but all fake coins have the same weight. In order to determine which coins are fake,
you are allowed to use a balance scale (see. Figure 1). Using the balance scale you can determine
whether the coins you put onto the le� side are heavier, lighter, or the same weight as the ones you put
on the right side.

a) Consider the problem with n = 9 and k = 1. Draw a decision tree (called ’Entscheidungsbaum’ in
the lecture) for a strategy of your choice.

Solution:

 =

①✶✱ ①✷✱ ①✸ ❄ ①✹✱ ①✺✱ ①✻

①✶ ❄ ①✷ ①✼ ❄ ①✽ ①✹ ❄ ①✺

①✶ ①✷①✸ ①✹ ①✺①✻①✼ ①✽①✾

❃ ✿ �✐♥❦❡ ❙❡✐t❡ s❝❤✇❡r❡r

❁ ✿ �✐♥❦❡ ❙❡✐t❡ �❡✐❝❤t❡r

❂ ✿ ✁❡✐❞❡ ❙❡✐t❡♥ ❣�❡✐❝❤

✂ ✂✂

✂

✄ ✄✄

✄

☎☎ ☎

b) Prove that for k = 1 even the best possible algorithm requires at least log3(n) − 1 comparisons to
�nd the fake coin in the worst case.

Solution: Each node of the decision tree has at most three children. �us, at depth i (root has depth
0) there are at most 3i nodes.

At some nodes the algorithm prints out a result. Each possible outcome occurs in the tree, because
each possible outcome must be recognized by a correctly working algorithm. �us, the number of
nodes must be at least as large as the number of possible outcomes n. For a decision tree of depth
w, we have

n ≤ number of nodes ≤
w∑
i=0

3i =
3w+1 − 1

2
< 3w+1

⇒ log3 n < w + 1⇒ w > log3 n− 1.

�e depth w of the decision tree is equal to the number of comparisons required, which proves the
claim.

7

c) For k = 1, provide an algorithm that �nds the fake coin and requires exactly dlog3(n)e comparisons
in the worst case.

Solution: We prove that such an algorithm exists by induction overm := dlog3 ne. �e proof yields
the desired algorithm. �e decision tree in a) already hints at the scheme of the algorithm.

Base case: For m = 1 we have 2 ≤ n ≤ 3. We compare x1 against x2. If one of them is heavier, it
is the fake coin. If they have the same weight, the coin x3 must exist and it must be the fake
coin.

Induction hypothesis: We assume that the there exists such an algorithm for somem ∈ N.

Induction step m→ m + 1: Consider a n ∈ N with m + 1 = dlog3 ne. We must prove that we
can �nd the fake coin within the n coins usingm + 1 comparisons. In order to do so, we split
the coins evenly into three setsM1,M2 andM3. Each of the sets has either dn/3e or dn/3e−1
elements. Because there are three sets and |M1| + |M2| + |M3| = n, two of them must have
the same number of elements. W.l.o.g. let those sets be M1 and M2. We compare the set M1

againstM2. If one of the sets is heavier, it contains the fake coin. If they have the same weight,
the fake coin is inM3.

In order to prove the claim, we now only need to prove that it is possible to �nd the fake coin
in a set of n′ := dn/3e coins using m comparisons. Because n satis�es m + 1 = dlog3 ne,
we have m < log3 n ≤ m + 1. �us, we also have 3m < n ≤ 3m+1 and in particular
3m−1 < n/3 ≤ 3m. Because 3m is an integer we even have 3k−1 < dn/3e ≤ 3m which
implies m = dlog3dn/3ee = dlog3 n

′e. Now, we can apply our induction hypothesis to prove
the step.

�e existence of the desired algorithm now follows by the principle of mathematical induction. �e
proof was constructive, which means that it contains the algorithm.

d*) Prove that for k ≥ 1 even the best algorithm requires at least k log3(
n
k) + (n − k) log3(

n
n−k) −

O(log(n)) comparisons in the worst case.

For this exercise, you may use the so-called Stirling approximation

ln(n!) = n lnn− n + Θ(lnn)

without further justi�cation.

Hint: Show using an decision tree that the number w of maximally required comparisons satis�es
the inequality 3w+1 >

(
n
k

)
.

Solution: �e argument is the same one as in b), but, this time we have
(
n
k

)
possible outcomes

(recall that
(
n
k

)
is the number of di�erent ways to select k coins from n coins). �us, we need the

depth w to satisfy (
n

k

)
< 3w+1. (2)

Note that by the Stirling approximation

log3 n! =
lnn!

ln 3
=

n lnn− n + Θ(lnn)

ln 3
= n log3 n− n/ ln 3 + Θ(log n).

8

Solving (2) for w and using the above formula, we get:

w > log3

(
n

k

)
− 1

= log3

(
n!

k!(n− k)!

)
− 1

= log3 n!− log3 k!− log3(n− k)!− 1

= n log3 n− k log3 k − (n− k) log3(n− k)− n/ ln 3 + k/ ln 3 + (n− k)/ ln 3

+ Θ(log n)−Θ(log k)−Θ(log(n− k))− 1.

Using the fact that k, n−k ≤ n, we get that Θ(log n)−Θ(log k)−Θ(log(n−k))−1 ≥ −O(log n),
and thus

w > n log3 n− k log3 k − (n− k) log3(n− k)−O(log n)

= k(log3 n− log3 k) + (n− k)(log3 n− log3(n− k))−O(log n)

= k log3

(n
k

)
+ (n− k) log3

(
n

n− k

)
−O(log(n)).

9

